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Abstract Strong anisotropy of thermal diffusivity is frequently observed in thin
film materials. We propose an in situ experimental method to remotely measure radial
and axial components of the thermal diffusivity. The method is based on the tradi-
tional laser flash technique but is specialized to also highly challenging experimental
situations such as sample manufacture and use phase when thin films may be exposed
to very high pressures or temperatures and to high temperature gradients. The method
requires laser pulses of very short duration and fast measurement of transient temper-
ature excursions in only radial directions on the surface of the thin film samples. The
accuracy of the method is checked by comparison with results from a finite element
calculation for a graphite sheet with high anisotropic conductivity that simulates a
thermo-physical experiment.
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a Thermal diffusivity, m2 · s−1

b Sample thickness, m
c Specific heat, J · kg−1 · K−1

d Radius of target spot, m
F Quantity defined in Eq. 7b
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Fo Fourier number
i Node number in numerical simulation
Q Heat pulse, J
r Radial coordinate, m
ri Radial coordinate of node i, m
R Radius of thin film sample or sheet, m
t Time, s
tA Time at a reference point A, s
T Temperature, K
T0 Thermal homogeneity criterion, compare Eq. 1
T ′ Derivative of temperature with time, K · s−1

x Vertical coordinate, m
Bi Biot number

Greek
λ Thermal conductivity, W · m−1 · K−1

ρ Density, kg · m−3

σ Stefan–Boltzmann constant, 5.667 × 10−8 W · m−2 · K−4

θ Dimensionless temperature
α Heat transfer coefficient, W · m−2 · K−1

1 Introduction

Intensive heat and mass transfer is involved in the manufacture of power electronic
devices during evaporation of thin films or in diffusion processes, or of thermal shields
for gas turbines during plasma spraying, or when preparing protective layers by chemi-
cal vapour deposition (CVD) on aerospace and atomic energy installations. Moreover,
in their use phase, thin film materials may be subject to very high pressures or tem-
peratures and to high temperature gradients. Accordingly, there is a clear need for
accurate determination of thermal diffusivity under in situ conditions, not only during
preparation but also if anisotropy of thermo-physical properties arises during ageing
of the films.

The thermal wave technique is frequently used for measurements of the thermal
diffusivity of thin films including investigation of sub-surface structures such as
detection of cracks and other disturbances that may arise during manufacture or re-
sult from materials fatigue during the use phase. This technique comprises scanning
photo-acoustic microscopy, the mirage effect, infrared radiometry, or measurement of
optical displacement (see, e.g., [1] for a survey, and the literature cited therein). Ther-
mal waves are generated from localized heat sources created under an intensity-modu-
lated laser or electron beam irradiation; the thermo-reflectance microscope (compare,
e.g., [2]) operates with even point-like heat sources. By variation of the modulation
frequency, surface or in-depth scanning of the thermal transport properties including
interfacial resistances of layered samples can be performed.

123



Int J Thermophys (2009) 30:1283–1299 1285

In the present state of the art, these methods work successfully under the following
conditions:

(a) stationary “background” sample temperature,
(b) isotropic properties of the samples to be investigated,
(c) opacity of sample or substrate material, and
(d) laboratory conditions, such as in the thermo-reflectance microscope

However, condition (a) may not be fulfilled during sample manufacture and use phases.
It is even questionable whether the time interval, �t , needed to reach stationary ther-
mal wave propagation is short enough to avoid collisions with “internal” variations
of sample properties (temperature or sample thickness). Not all thin film deposition
methods operate under stationary conditions. For example, plasma spraying of a pro-
tective coating on a turbine blade is performed by running the beam (droplets of molten
metallic or ceramic powder delivered by a spray gun) line by line over the substrate.
This induces strong variations, with a frequency on the order of seconds, of sample
temperature during growth of the coating. The interval, �t , scales with L2/a and is
nearly independent of frequency (compare the solution found by Drach [3] using a
Laplace transform of the heat conduction equation), with L , the thickness of the coat-
ing and a, its diffusivity. In case the diffusivity is small, this means �t too, can extend
to several seconds so that the intensity-modulated thermal wave experiment cannot
follow variations of sample properties quickly enough during deposition.
Condition (b) can rigorously be fulfilled only with polycrystalline thin films, or excep-
tionally with epitaxially grown films on appropriate substrates, or with pure metals if
the film thickness is sufficiently large. Condition (c) is usually applied to the wave-
length of the incoming laser radiation, but thin films may be transparent at other
wavelengths of the thermal radiation spectrum that inevitably is generated by a heated
target area. It is, therefore, questionable whether the transport properties of thin film
samples reduce to purely conductive heat flow in case the film is opaque at just the
incident laser radiation. Laboratory conditions (d) can hardly be realized if the sample
is integrated in a running industrial process, or if the thin film shall be investigated
during its preparation, which similar to plasma spraying or CVD, mostly proceed at
high temperatures and in closed deposition chambers.
Low-frequency measurements, compare, e.g., Pelzl et al. [4], indicate stronger lateral
(parallel to surface) thermal wave propagation, but separation between lateral and
normal directions by frequency variation at best delivers an approach that would be
justified only if lateral thermal diffusivity and effusivity are much larger than the
corresponding normal components.
Alternatively, 3ω ([5,6]) and hot-strip methods [7] are candidates for measuring the
thermal conductivity of thin films. Instead of an irradiated target spot, both methods
apply heated metallic strips as heat sources prepared on the sample; the strips also
serve as resistance thermometers to detect temperature variations on the sample sur-
face. Both methods suffer at least from problems (a) and (d), as before. However, using
the 3ω method, anisotropic transport properties even of superconducting thin films at
cryogenic temperature have been determined ([6]), such as the properties of BiSrC-
aCuO powder in tube conductors, with an anisotropy ratio of the thermal conductivity
on the order of 10 to 100, between c- and ab-axis orientation.
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In this article, we propose another flash method to cover not only the field of anisotropic
thin films but also remote investigation of their in situ properties during deposition or
industrial application.
Contrary to intensity-modulated measurements, we do not have the problem associated
with time interval, �t , needed to obtain quasi-stationary thermal wave propagation
before data may be taken: A laser pulse can be made short enough not to collide with
transient temperature excursions in a thin film during deposition. Data collection may
be started immediately after the end of the pulse. However, the question is whether also
the temperature excursion generated by the laser pulse will not collide with internal
variation of the sample temperature (that, as before, may arise in a fast or oscillating
deposition process or under transient load conditions). As will be shown in Sect. 3
for a graphite thin film, extraction of its axial and radial diffusivity components can
be realized using data (temperature excursion on the sample front side) taken already
after 400 ms or between 35 ms and 55 ms, respectively, after deposition of the laser
pulse. The proposed method also applies rather simple analytical expressions.
While remote measurements of thermal diffusivity have been discussed extensively
in the literature, the traditional laser flash technique is not sufficiently advanced for
anisotropic materials. Although Taguchi and Nagasaka [8] extended the theory of two-
dimensional heat conduction and verified the capability of dynamic grating radiometry
to investigate anisotropic materials, their experimental assembly is too complex for
in situ measurements.
We previously introduced a new front-face flash-monitoring method [9] for remote
investigation of two-layer thin-film samples of isotropic thermal conductivity. Instead
of taking temperatures directly at the pulsed heating region, we suggested in [10]
to measure temperature at any distance from the center of the heating spot (in this
respect, the flash method is similar to photothermal displacement studies by Fournier
et al. [2] and Pelzl et al. [4]). The method does not need corrections to radiative and
convective heat losses, and it also avoids the serious limitations suffered by standard
methods when samples are transparent or semi-transparent; this means that problem
(c) mentioned above can be avoided. The results also do not depend on sample thick-
ness. Simultaneous remote measurement of the diffusivity and absorption coefficient
of thin film, isotropic materials was introduced in [11].
In this article, we describe application of a remote method to an anisotropic material
and an investigation whether different temporal or spatial distributions of laser power
may affect results for radial and axial diffusivity components. Moreover, this article
applies photothermal displacement but the advantage of the displacement becomes
clear especially under industrial working conditions when some positions of the target
spot might not be visible for a Thermo-Vision system. A graphite sheet with high
anisotropy in directions parallel and perpendicular to the irradiated plane is taken as
an example.
For proper use of the analytical expressions presented in [9–11] and in this article, the
dimensionless criterion of thermal homogeneity,

T0(t) = [T (t)/t]/[dT (t)/dt] (1)
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identifies the region of Fourier numbers, Fo, where the heating regime is regular and the
analytical solutions may be applied to measured temperature excursions, T (t). Behav-
iour of T0, as a function of Fourier number, has been discussed in [9] for different
experimental conditions.

2 Description of the Method

2.1 Equation of Heat Conduction in Cylindrical Coordinates

Radial and axial coordinates and dimensions of a thin film sample are illustrated
in Fig. 1. The sample is irradiated by an axially symmetric laser beam of uniform
intensity delivering a short (rectangular) heat pulse to a cylindrical target spot located
at x = 0 with dimensions 0 ≤ r ≤ d (non-uniform, temporal, or spatial laser beam
intensity will be discussed in Sect. 3.3). Transient temperature excursion is measured
at the center of the specimen (x = 0, r = 0) and at positions ri (x = 0, d < ri < R)
outside the target spot (the index i denotes position number).
If the thermal diffusivity components are independent of temperature, the heat con-
duction in anisotropic materials, without convective or radiative losses to the ambient,
is described by

αr
∂2θ

∂r2 + αr

r

∂θ

∂r
+ αx

∂2θ

∂x2 = ∂θ

∂t
(2)

0

Q

X

b

2R

2d

r
ri

Fig. 1 Transient heat conduction (schematic) in a disk of thickness, b, and radius, R. The target spot of
radius d is irradiated at x = 0. Nodes with radial distance, ri , from the center of the sample (x = 0, r = 0)
will be applied in the numerical simulation, compare with text
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In Eq. 2, θ(t) denotes the (dimensionless) temperature excursion with time, t , r is the
radius, x is the distance into the sample of thickness, b, and ar and ax indicate the
corresponding thermal-diffusivity components.
Boundary condition at t = 0 is

θ(x, r, 0) =
⎧
⎨

⎩

Q
cρg for x = 0, 0 ≤ r ≤ d
0 for x = 0, d < r ≤ R
0 for 0 < x ≤ b, 0 ≤ r ≤ R

(3)

and for t > 0

∂θ(x, r, t)

∂x
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∣

x = 0
x = b

= ∂θ(x, r, t)

∂r

∣
∣
∣
∣
∣
∣ r = R

= 0 (4)

under adiabatic conditions. In Eq. 3, Q denotes the heat pulse, ρ is the density of the
thin film material, c is its specific heat, and g is the depth of energy absorption.

2.2 Separation into Axial and Radial Diffusivity Components

For determination of a temperature excursion with time in a conductive solid, Carslaw
and Jaeger [12, pp. 256, 356] showed that an initial temperature distribution is equiva-
lent to a distribution of instantaneous, initial heat sources. They also showed
[12, pp. 33–35] that in certain regular solids (such as orthotropic, as is the case here for
strong anisotropy), heat flow components perpendicular to each other can be treated
separately. Accordingly, for a right cylinder with an axially symmetrical, initial tem-
perature distribution, or with equivalent instantaneous, initial heat sources, and for
strong anisotropic conductivity, Eq. 2 can be split into axial and radial components:
For the axial component, θ(x, t)(t > 0, 0 < x < b), we have

∂θ

∂t
= αx

∂2θ

∂x2 (5)

and for the radial component θ(r, t)(t > 0, 0 < r < R)

∂θ

∂t
= αr

∂2θ

∂r2 + αr
1

r

∂θ

∂r
(6)

The final result is the product of the corresponding one-variable solutions. Extension
to pulses of finite duration may be obtained by integration of the results provided by
Eqs. 5 and 6 with respect to time.
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2.3 Extraction of Axial and Radial Components of the Diffusivity

Equation 5 for the axial component, ax , of the diffusivity can be solved analytically,
as we have reported previously ([9]);

αx = −b2lnF

π2�τ
(7a)

using F =
∑n

k=1 T k ∑n
k=1 T k−1 − n

∑n
k=1 T k T k−1

(
∑n

k=1 T k−1)2 − n
∑n

k=1 (T k−1)2
(7b)

In Eq. 7b, T k denotes temperature measured at time, tk , at the point x = 0, r = 0, and
n is the number of temperature measurements taken at this position with time steps,
�τ , in-between.
Equation 6 for determination of the radial component, ar , can be replaced by a finite
difference relation, and then can be solved yielding

αr =
T k

i −T k−1
i

�t
T k

i+1−T k
i−1

2ri �r + T k
i+1−2T k

i +T k
i−1

(�r)2

(8)

In Eq. 8, T k
i denotes temperature measured at time, tk , at position number, i , with

x = 0, r = ri . The intervals are defined by �t = tk − tk−1 = tk+1 − tk , and
�r = ri+1 − ri .

3 Numerical Simulation of a Thermophysical Experiment

As a test of the proposed method, finite element calculations have been performed
to simulate a real thermophysical experiment for determination of axial and radial
components of the thermal diffusivity. In a rigorous sense, the proposed analytical
tools can be proved only by application of another analytical or by a numerical tool
that provides exact solutions. Finite element methods usually are considered as exact
in conduction heat transfer. Experiments, on the other hand, suffer from data scattering
and thus cannot provide a rigorous (mathematical) confirmation of the expressions;
instead, experiments demonstrate applicability of a proposed method if the results
obtained by the new method agree with already existing data.
In the first step, the numerical simulation yields the excursion with time of the surface
temperature, and the dependence of the data input made for irradiation and mate-
rials diffusivity. This procedure (calculation of transient surface temperature) simu-
lates a real thermophysical experiment (remote temperature measurement) using any
matrix infrared Thermo-Vision system with sufficiently high data collection and han-
dling rates. In the second step, the diffusivity components will be extracted from the
simulated temperature excursions using the solutions of Eqs. 7a and 8, and the results
in turn compared with the data input into the numerical model.
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Assume a solid graphite disk of radius R = 120 mm, with sample thickness b = 1 mm.
The thermal conductivity, λ, of graphite is specified by radial λr = 1140 W·m−1 ·K−1

and axial λx = 6.4 W ·m−1 ·K−1 components; specific heat is c = 623.9 J ·kg−1 ·K−1

and density ρ = 2260 kg · m−3; the materials properties are from [13, p. 214]. This
yields the thermal diffusivity components ax = 4.539 × 10−6m2 · s−1 and ar =
8.085 × 10−4m2 · s−1, as data input fed into the numerical model.
A laser pulse delivering Q = 1 J with a pulse length of 8 ns is used as excitation source
and is applied over a heating spot of radius d = 15 mm at the front face (x = 0) of
the sample. Since calculations starts at T = 0, all the calculated temperatures, T (t),
are over-temperatures.
In order to properly interpret the simulated temperature results, we need reference-time
points that can be applied in Eqs. 7a and 8. The criterion T0, Eq. 1, allows identifi-
cation of positions, ri , at which the thermal-diffusivity components versus time may
subsequently be determined, see below. The index, i , is taken to also indicate node
numbers in the finite element calculations.

3.1 Extraction of the Radial Diffusivity Component

For determination of the radial component, ar , of the diffusivity, the positions, ri ,
should be located clearly outside the image of the laser beam (the heated target spot).
In the present simulations, they are identified by node numbers 20–25, with radial
distances r20 = 18.75 mm, r21 = 22.5 mm, r22 = 26.25 mm, r23 = 30 mm, r24 =
33.75 mm, and r25 = 37.5 mm from the center (x = 0, r = 0) of the sample. Spacing,
3.75 mm, between these nodes is constant. We will identify these nodes in the follow-
ing by a “radial node set” {Nr }. Another set, {Nx }, will be used for determination of
the axial component, ax , of the diffusivity. The set {Nx } comprises the nodes 10–15,
all located inside the image of the laser beam, with radial distances r10 = 0 mm,
r11 = 1 mm, r12 = 2 mm, r13 = 3 mm, r14 = 4 mm, and r15 = 15 mm from the
center (node 15 is located on the periphery of the image).
Figure 2 shows results for T0 using {Nr } and the data input for the components ar and
ax of the diffusivity. Extraction of ar from the calculated temperatures, T (t), using
nodes of the set {Nr } by the method described in this article, has to be applied to
data points also outside (in time) of the resonance-like oscillations (break points) of
T0 obvious in all the curves plotted in Fig. 2. The oscillations in T0 can be explained
simply from the behavior of dT/dt (compare Fig. 3a, b): At any position, ri , inside
or outside the image, T (t) first increases when the laser pulse adiabatically heats the
inner nodes, or when the thermal wave arrives at the outer nodes, respectively. Then
T (t) runs over a maximum (its width being correlated with conduction properties and
thermal capacity of the material) and finally decreases due to conductive losses to
positions ri+1 > ri . This explains dT/dt and T0. Extraction of the radial diffusivity
component yields the results presented in Fig. 4.
For times clearly outside the break points, all the curves in Fig. 4 converge to ar =
8.085 × 10−4m2 · s−1, which indicates almost perfect agreement with the input data
for the radial diffusivity component used in the numerical simulation.
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Fig. 2 Criterion of thermal homogeneity, T0, as a function of time, t , observed at nodes of the set {Nr }
all the nodes of which are located outside the target spot, at different radial distances from the center. The
curves result from T0 = (T/t)/(dT/dt), Eq. 1, with temperatures, T (t), obtained in a finite element solution
of Eq. 2 with boundary conditions given in Eqs. 3 and 4. Results are given for a graphite sheet subjected to
a rectangular laser pulse of homogeneous power density and 8 ns duration; data input is explained in the
text. The target spot (image of the laser beam) on the front side of the sample has a radius of 15 mm

It is important that this agreement is demonstrated not only for a single node but
for a distribution of nodes, here the nodes of the set {Nr }. As mentioned, in a real
thermo-physical experiment and under industrial working conditions, some positions
of the target spot might not be visible for a Thermo-Vision system (and also for
this reason, a rigorous experimental proof of the suggested methods would not be
possible). Determination of the component, ax , can be made using data obtained
rather shortly (t ≥ 400 ms) after deposition of the laser pulse.
Note that temperature excursions in Fig. 4 are almost identical for the nodes 10–14,
for all times 10−10 s ≤ t ≤ 1 s. These nodes, all located within the image, experience
almost perfect adiabatic conditions during duration of the pulse. At node 15 located at
r = 15 mm from the center, the temperature is significantly lower, due to conductive
heat losses to regions outside the target spot. After t = 50 s (end of the simulations),
all the curves saturate to �T = Q/(ρcV ) = 0.0157 K (over-temperature), with V ,
the total volume of the disk.

3.2 Extraction of the Axial Component

We must find an interval 0.16 < Fox < 0.25 (compare [14]) in which Eqs. 7a, b
may be applied; Fox denotes the Fourier number using the axial diffusivity compo-
nent, ax , i.e., Fox = ax t/b2. Assume for the moment that ax is known. The interval
0.16 ≤ Fox ≤ 0.25 then is uniquely correlated with a time interval t1 ≤ t ≤ t2 :
Fox = 0.16 yielding the time of regularization, t1, and Fox = 0.25 giving t2, respec-
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Fig. 3 (a) Numerically simulated, transient node temperatures, T (t), obtained in a finite element solution
of Eq. 2 with boundary conditions given in Eqs. 3 and 4. Results are given for nodes of the set {Nx } all
located inside the target spot, at different radial distances from the center of the graphite sheet. Results are
given for a graphite sheet subjected to a rectangular laser pulse of homogeneous power density and 8 ns
duration; data input is explained in the text. The target spot (image of the laser beam) on the front side of
the sample has a radius of 15 mm. (b) Same plot as in (a), but for nodes of the set {Nr } all located outside
the target spot, at different radial distances from the center of the graphite sheet

tively. Application of Eqs. 7a, b at times t1 ≤ t ≤ t2 then allows identification of the
axial thermal diffusivity from the temperature excursion.
However, the problem is that ax is unknown. The only available information is provided
by measurement of the temperatures, T (t), and the criterion, T0(t). We accordingly
need a calibration that relates T0 to the Fourier number. This is realized by selection
of a reference point, A, in a diagram, T0 versus t , identifying a reference time, tA, at
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Fig. 4 Radial diffusivity component, ar , as function of time, t , calculated at nodes of the set {Nr }; all the
nodes are located outside the target spot, at different radial distances from the center of the graphite sheet.
Data are obtained applying Eq. 8 to numerically simulated, transient node temperatures obtained in a finite
element solution of Eq. 2 with boundary conditions given in Eqs. 3 and 4, for the graphite sheet. All the
curves converge to the numerical data input, ar = 8.085 × 10−4 m2 · s−1

which T0 attains the value T0(t = tA). When this time is fixed, a numerical simulation,
with diffusivity, ax , taken as a variable, generates a second diagram, T0 versus Fo, for
constant t = tA. Comparison is made between T0 in both diagrams. In principle, any
of the data points of the curves, T0, each calculated for the set {Nx }, can be selected for
the reference point, A, but it is convenient to select those positions (in time) where T0
attains a local maximum or minimum. It is thus clear that the procedure can be applied
only to T0 obtained at positions inside the target spot; otherwise, we would again
observe resonance-like oscillations similar to those seen in Fig. 2. With T0(t = tA)

taken from the first diagram, the second diagram allows to identify the Fourier number
at which the same value, T0(t = tA), is observed.
As in the first diagram, Fig. 5a shows T0 versus t , using the set {Nx }. From this set,
we first select position (node) number 10, the central node with r10 = 0, x = 0, and
for the reference point, A, we select the local minimum of the curve, T0 versus t , for
this node. It is located at tA = 13 ms; this yields T0(t = tA) = −1.657. The local
minimum of the T (t) of the other nodes of the set {Nx }, with non-zero radial distances,
is seen at the same tA, in a good approximation. It is thus sufficient to consider only
T0 of node 10 in the following.
The second diagram, T0 versus Fo, is given by Fig. 5b. Considering ax as a variable, the
same T0(t = tA) = −1.657 is attained at Fo = 0.059 = ax tA/b2. This immediately
determines the diffusivity, ax (a provisional value, because from a single T0-curve
only) and the interval t1 ≤ t ≤ t2 in which Eqs. 7a, b is valid. Using the provi-
sional ax , the Fourier numbers Fox = 0.16 and 0.25 are correlated with t1 = 35 and
t2 = 55 ms. Application of Eqs. 7a, b to this time interval then allows taking into
account all data points taken at times, t , within the interval t1 ≤ t ≤ t2. This finally
yields the axial diffusivity component ax = 3.800 × 10−6 m2 · s−1.
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Fig. 5 (a) Thermal homogeneity criterion, T0, calculated at nodes of the set {Nx }; all nodes are located
inside the target spot, at different radial distances from the center of the graphite sheet. Time, tA, is identi-
fied from a local minimum of the curves T0 versus time; this yields tA = 13 ms. (b) Thermal homogeneity
criterion, T0, as in (a), now plotted versus Fourier number, Fo. Compare with text for explaining details of
the procedure to extract the axial diffusivity, ax , from comparison of T0 in (a) and (b)

This value is below the original data input for ax (4.539 × 10−6 m2 · s−1) by about
15 %. The relatively high discrepancy is due to an assumed low full-frame rate (125 Hz)
provided by a standard measuring device like the Thermo-Vision system SC6000 [15].
If used as an experimental instrument, it then would allow a data recording rate of
only four experimental points (in the present case, the nodes 10, 11, 12, and 13) in the
interval 35 ms ≤ t ≤ 55 ms. A Thermo-Vision system with higher time resolution and
data handling (or, respectively, an extended set {Nx }, with smaller distances between
neighboring nodes) would substantially improve the accuracy: With a full-frame rate
of 1000 Hz, the uncertainty will be improved to 2 % or better.
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Fig. 6 Numerically simulated, transient node temperatures, T (t), calculated for temporal variations (pulses
1–3) of laser power density impinging on the graphite sheet, with a circular image of 15 mm radius on the
front side of the sample. Pulse (1), blue symbols, is rectangular (constant in time), with 1.768×1011 W·m−2

power density, pulse (2), red symbols, is triangular and increases linearly from zero to maximum value, and
pulse (3), green symbols, again triangular, decreases linearly from maximum value to zero. Duration of the
pulses 1–3 is 8 ns. Data are given at the center of the laser pulse image (diamonds) and at a radial distance
of 15 mm (triangles; the periphery of the image). (Color figure in online)

3.3 Influence of Temporal and Spatial Laser Beam Properties

3.3.1 Temporal Variations of Laser Power Density

In Subsects. 3.1 and 3.2, a simple, rectangular laser pulse (1) of 1.768 × 1011 W · m−2

power density, constant over the target spot (15-mm radius), and of 8 ns duration has
been applied to the sample. Whether a different temporal power distribution would
affect the results obtained for ar and ax has been checked in the following by assum-
ing triangular pulses (2) and (3). Pulse (2) starts at zero power density and linearly
increases to a sharp maximum, while pulse (3) starts with a sharp maximum and
decreases linearly to zero power density. The power density, dQ/dt , for the three
options is normalized so that the integral over time, 0 ≤ t ≤ 8 × 10−9 s, and over the
total area, A, of the graphite sheet is constant:

Q =
∫ ∫

(dQ/dt)dtdA = 1 J (9)

Results for the temperature excursions for pulses (1)–(3) are shown in Fig. 6. Data are
given only for node 10 (the central position of the target spot) and node 15 (located at
the periphery of the image).
We have seen in Fig. 3a that temperature excursions observed at the “inner” nodes of
the set {Nx } are already almost identical since these nodes, under a pulse with a homo-
geneous distribution of power density (as assumed in the simulations), are exposed to
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the same irradiation intensity, and the inner nodes experience adiabatic conditions. It is
thus sufficient to consider only node 10 in the following. If the intensity changes with
time, Fig. 6 of course shows that the temperature increase at this node, similar to the
other nodes, in the interval 0 ≤ t ≤ 8 × 10−9 s significantly depends on the temporal
structure of the pulse. However, all the curves in Fig. 6 again become identical after
the end of the irradiation period. The same applies to the curves calculated for node
15 that is located on the periphery of the image, and it applies, in particular, to those
nodes located at positions still more distant from the center, i.e., to the nodes of the set
{Nr }. Saturation of all the curves in Fig. 6 again is at T = 0.0157 K over-temperature.
This in turn means that the application of Eq. 8 to the temperature excursions obtained
for the nodes of set {Nr } necessarily yields the same radial diffusivity as before,
ar = 8.085 × 10−4 m2 · s−1, for pulses (1)–(3). There is apparently no dependency
of the radial diffusivity on the temporal structure of the laser pulse, provided data are
taken safely outside the image.
Even when extracting the axial component of the diffusivity, results are almost identi-
cal to the previous value, ax = 3.800×10−6 m2 ·s−1, which was to be expected: All the
nodes of the set {Nx }, are irradiated homogeneously in space; the laser power density
varies only with time in this test. There is also apparently no detectable dependence
of the axial diffusivity on the temporal structure of the laser pulse.

3.3.2 Spatial Variations of Laser Power Density

The same analysis for extraction of ar and ax has been performed with three different
spatial distributions of the power density. For simplicity, it was assumed that the power
density is constant over an image on the front side of the graphite sheet of 5-mm, 10-
mm, and (as before) 15 mm radius, with very small contributions outside this area
(i.e., within the previous radius of the image of 15 mm). Again, the power density was
adjusted to yield the same value (Q = 1 J, Eq. 9) after integration over the irradiation
period 0 ≤ t ≤ 8 × 10−9 s and the total surface of the graphite sheet. Figure 7 shows
strongly differing temperature excursions arising during the irradiation period. The
maximum target temperature observed during irradiation and in the period t ≤ 0.1 ms
is about 180 K (over-temperature), which will initiate radiative losses, QRad. They can
be estimated by division of the total simulated time scale into Sects. 1–3 using

QRad = σ ATarget(T
4
Target,1�t1 + T 4

Target,2�t2 + T 4
Target,3�t3) (10)

σ is the Stefan–Boltzmann constant, ATarget is the area of the image of the laser beam
impinging onto the front side of the graphite sheet, �t1 is the irradiation period (8 ns),
�t2 is the period (10 ns to 0.1 ms) where the temperature, TTarget, is approximately
constant (about 160 K, compare Fig. 7), and �t3 is the period between 0.1 ms and
0.1 s where TTarget decreases approximately linearly to below 1 K. Taking TTarget,1 =
180 K, TTarget,2 = 160 K, and TTarget,3 = 0.9TTarget,2, as a rough average, this yields
QRad < 0.01 J from the image with 5 mm radius, which can be neglected. Radiation
losses from the total surface of the graphite sheet are very small, too, because the sheet
will not attain high temperatures during the short period t ≤ �t3. The period t ≤ �t3
(0.1 s) also is too short to induce convective losses.

123



Int J Thermophys (2009) 30:1283–1299 1297

Fig. 7 Numerically simulated, transient node temperatures, T (t), calculated for spatial variations (pulses
1–3) of laser power density impinging on the graphite sheet, with different radii of the images on the front
side of the graphite sheet. All the pulses are rectangular (constant in time), duration of the pulses is 8 ns.
The radii of images of the pulses 1–3 are 15 mm (blue), 10 mm (red), and 5 mm (green symbols). Data are
given at the center of the laser pulse image (diamonds) and at a radial distance of 15 mm (triangles). (Color
figure in online)

For extraction of the radial component, it is necessary to increase the distance from the
center of the sample to avoid conflicts again with resonance-like oscillations, compare
Fig. 8. For a distance of at least 63 mm, the ar -values converge (without intermediate
oscillations) to the values listed in Table 1, again in very good agreement with the
input data.
Morevoer, the results obtained for the axial component, ax , by application of Eqs. 7a,
b, depend on the spatial distributions, Eqs. 1–3, of the power density, compare Table 2.
The more important the deviations become, the smaller the image radius and the devia-
tions exceed 30 % if the radius is below 5 mm. Whether this situation can be improved,
e.g., by application of Eqs. 7a, b to nodes different from the central node has to be
clarified in further investigations.
In summary to Subsect. 3.3, while determination of the radial component of the dif-
fusivity apparently is not very sensitive to temporal or spatial variations of the laser
power density on the image, the proposed method yet should prefer a homogeneous
spatial distribution of the power density in both time and geometry to also yield reliable
axial diffusivity components from front-side laser flash experiments.

4 Conclusion

Remote measurement of temperature excursions, and extraction of the anisotropic
thermal diffusivity by means of analytical expressions, will be successful if the nodes
at which data are taken are properly selected on the basis of the thermal homogene-
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Fig. 8 Radial diffusivity component, ar , as function of time, t , for a rectangular laser pulse impinging on
the front side of the graphite sheet. The image has a radius of 5 mm. Results are given for nodes all located
outside the target spot. Open and full symbols (diamonds, rectangles, and triangles) refer to nodes located
at radial distances between 23 mm and 35 mm or between 51 mm and 63 mm from the center, respectively.
With increasing radial distance, resonance-like oscillations in the component ar disappear successively (the
last oscillation is seen at 35 mm radial distance), and the curves finally converge (constant in time, no more
oscillations) to values close to the numerical data input, ar = 8.085 × 10−4 m2 · s−1

Table 1 Radial diffusivity component, ar , calculated using Eq. 8; data are obtained using nodes located
clearly outside the image radius. Data input to the simulation is ar = 8.085 × 10−4 m2 · s−1

Image radius (mm) Radial distance of the node
from center (mm)

Radial diffusivity component
(10−4 m2 · s−1)

15 33.75 8.085

10 63 8.137

5 63 8.136

Table 2 Axial diffusivity
component, ax , calculated using
Eq. 7a, b; data are obtained
using the central node of the
graphite sheet. Data input to the
simulation is
ax = 4.539 × 10−6 m2 · s−1

Image radius (mm) Axial diffusivity component
(10−6 m2 · s−1)

15 3.800

10 4.936

5 6.030

ity criterion, T0, and with respect to temporal and spatial structure of the irradiation
pulse. The results obtained for a graphite sheet have verified applicability of the method
provided an appropriate (fast) Thermo-Vision system is available. Note that the pro-
cedure presented so far can be applied reasonably to nearly adiabatic conditions only.

The results can be used for “thermally thin films” when the Biot number, Bi =
αb/λ, is small, e.g., Bi ≤ 0.1, compare standard literature on heat transfer (α is a heat
transfer coefficient). In this case, we have a solely thermal-diffusivity problem. In the
present example, the graphite disk of thickness b = 1 mm is “thermally” thin but the
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method can be applied also to much larger (physical) sample thicknesses, depending
on the heat transfer coefficient.
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